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DØ collaboration

Made up of about 500 scientists from 20 countries and 86 institutions
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DØ luminosity

-Today’s result: 5.4 fb−1

90% efficiency in data taking
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DØ detector

Designed to detect and identify a broad range of different particles.
Magnet polarities flipped regularly.
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tt̄ production at the Tevatron

Produced via the strong interaction
85% qq̄ → tt̄ + 15% gg → tt̄

Asymmetry arises from qq̄ → tt̄ initial states

LHC still not competitive
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Lots of properties to study

Today’s topic in red.
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Asymmetry in top-antitop quark production

In early 1980s, an asymmetry observed in
e+e− → µ+µ− at

√
s = 35 GeV << MZ used to

verify the validity of the EW theory.
(Phys. Rev. Lett. 48, 1701-1704 (1982))
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Similarly, asymmetry in pp̄→ tt̄ could give
information about new physics.
pp̄→ tt̄ more complicated than e+e− → µ+µ−:

I Top quark not directly observed,
but reconstructed from decay products

I Lab frame different from collision frame

Production level
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Definitions

Does top quark or antitop quark follow direction of proton?

For pp̄→ tt̄, use y = 1
2 ln(E+pz

E−pz
):

I Define ∆y = yt − yt̄

I ∆y invariant to boosts along beamline
I Reconstructed ∆y = ql · (yt,lep − yt,had)

Also use asymmetry based on lepton from top
decay:

I Very good precision
I Simple

AFB = N(∆y>0)−N(∆y<0)
N(∆y>0)+N(∆y<0)
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Al
FB = N(qlyl>0)−N(qlyl<0)

N(qlyl>0)+N(qlyl<0)

Two different types of measurements:
I Reconstruction level: After selection and reconstruction.

Background subtracted data.
I Production level: Can be directly compared to SM predictions.

Unfolding.
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Asymmetry in the standard model

SM predicts no asymmetry at LO in QCD, and a small asymmetry at NLO.
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Previous measurements

0 20

ForwardBackward Top Asymmetry, %

Reconstruction Level

Production Level

1bfDØ, 0.9 8±12

1bfDØ, 4.3 4±8

1bfCDF, 1.9 14±24

1bfCDF, 5.3 .47±15.7
ebber,Wrixione and B.R.FS.

, 029 (2002)06JHEP 

DØ results:
I PRL 100, 142002(2008) for 0.9 fb−1

I ICHEP 2010 for 4.3 fb−1 (preliminary)

CDF:
I PRL 101, 202001(2008) for 1.9 fb−1

I Phys. Rev. D 83,112003 (2011) for 5.3 fb−1
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Event Selection and Reconstruction

Search in the lepton (e/µ) + jets channel

Require:
⇒ 1 lepton with pT > 20 GeV

⇒ /ET > 20 GeV

⇒ ≥ 4 jets with pT > 20 GeV

⇒ At least 1 jet with pT > 40 GeV

⇒ At least 1 jet passing b-tagging
requirements; 70% efficient for b jets
from top decay and 8% rate of mis-ID.
⇒ Charge of lepton determines which
reconstructed quark is the top quark.

Reconstruct events with a kinematic fitter,
requiring MW = 80.4 GeV and Mt = 172.5 GeV
Keep only assignment with lowest χ2

1581 events pass selection
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Predictions

All predictions made at NLO in QCD via MC@NLO

Level Channel AFB (%) Al
FB (%)

Production lepton+jets 5.0± 0.1 2.1± 0.1

Reconstruction e+jets 2.4± 0.7 0.7± 0.6
µ+jets 2.5± 0.9 1.0± 0.8
l+jets 2.4± 0.7 0.8± 0.6
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Backgrounds

Two main sources of background with similar signature to tt̄ events:
I W+jets - Production of W in association with jets; simulated with

ALPGEN+PYTHIA
I Multijet - Taken from data

Other small backgrounds approximated as W+jets:
single top, diboson and Z+jets
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Separating signal from background

Likelihood discriminant designed to separate tt̄ signal events
from W+jets background
Inputs to discriminant have small correlations with |∆y|
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Reconstruction method

Use maximum likelihood fit to measure reconstructed asymmetry,
signal fraction and background fractions
Templates are:

I tt̄ signal with ∆y > 0
I tt̄ signal with ∆y < 0
I W+jets background (AFB taken from simulation)
I Multijet background derived from data (AFB taken from data)
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Results from reconstruction of AFB

y∆                                                                                                  
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Bin width is 1/2 resolution

l+≥4 jets l+4 jets l+≥5 jets

Raw N∆y>0 849 717 132
Raw N∆y<0 732 597 135

AFB(%) 9.2±3.7 12.2±4.3 -3.0±7.9

mc@nlo AFB (%) 2.4±0.7 3.9±0.8 -2.9±1.1

Measured AFB =
(
9.2± 3.6+0.8

−0.9

)
%

Statistical significance from MC@NLO prediction: 1.9 SD
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Dependence of AFB on |∆y| and Mtt̄

10 0 10 20 30

ForwardBackward Top Asymmetry, %

Reconstruction Level

VeG < 450
tt

m

VeG > 450
tt

m

1bfDØ, 5.4 4.8±7.8

1bfCDF, 5.3 4.3±2.2

1bfDØ, 5.4 .06±11.5

1bfCDF, 5.3 .26±26.6
ebber,Wrixione and B.R.FS.

, 029 (2002)06JHEP 
10 0 10 20 30

ForwardBackward Top Asymmetry, %

Reconstruction Level
1bfDØ, 5.4

| < 1y∆| 4.1±6.1

| > 1y∆| 9.7±21.3

ebber,Wrixione and B.R.FS.
, 029 (2002)06JHEP 

No significant deviation between AFB at reconstruction level.
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What is unfolding?

Unfolding helps deal with imperfect detector reconstruction.
Requires knowledge of how detector reconstruction works.
Example below from Statistical Data Analysis by Glen Cowan.

True Reconstructed Unfolded
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Unfolding procedures

Input to unfolding is background subtracted data.
Use two different unfolding procedures:

I Maximum Likelihood unfolding with four bins
I Regularized unfolding with 50 → 26 → 2 bins

Why use regularized unfolding?
I More accurately describes migrations across the ∆y = 0 boundary

between the forward and backward regions
I Regularization smoothes out noisy components
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Unfolding via matrix inversion

ML unfolding (matrix inversion) with four bins:
I Binning the same as CDF’s measurement.
I ~nreco = SA~nprod =⇒ ~nprod = A−1S−1~nreco

I Bin edges at ∆y = −3,−1, 0, 1, and 3
I Very similar migrations as seen by CDF.
I Diagonal of A shows relative acceptance for different ∆y ranges and

sums to 4.

S =

2664
0.50 0.08 0.03 0.02
0.35 0.65 0.24 0.11
0.12 0.25 0.65 0.32
0.03 0.02 0.08 0.54

3775 A =

2664
1.04 0 0 0

0 1.03 0 0
0 0 1.00 0
0 0 0 0.93

3775
~nreco =

2664
95
402
456
141

3775 ~nprod =

2664
100
354
452
187

3775
Statistical uncertainty measured with ensemble testing.
Unfolded AFB from matrix inversion = 16.9% +/- 8.1%.
CDF result for same technique: AFB = 15.8% +/- 7.5%.
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Procedure for regularized unfolding

Use TUnfold class with 50 → 26 bin in ∆y and regularization

Modified TUnfold to use variable binning

Regularize on curvature, requiring a somewhat continuous derivative of
event density
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Ensemble testing used to evaluate:
I Strength of regularization
I Statistical fluctuations of backgrounds
I Model dependence of bias from technique
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Results with regularized unfolding
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Statistical uncertainty evaluated with ensemble testing.
Result from regularized unfolding: AFB = (19.6± 6.0+1.8

−2.6)%
Better statistical strength than unfolding by matrix inversion.
Statistical significance from MC@NLO prediction: 2.4 SD
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Lepton-based asymmetry

Simple observable.

Same technique as measurement of reconstructed AFB.

Additional selection of |yl| < 1.5 to avoid large acceptance corrections.

1532 events.
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AlFB = N(qlyl>0)−N(qlyl<0)
N(qlyl>0)+N(qlyl<0)

l+≥4 jets l+4 jets l+≥5 jets
Raw Nq·yl>0 867 730 137
Raw Nq·yl<0 665 546 119

Al
FB (%) 14.2± 3.8 15.9± 4.3 7.0± 8.0

mc@nlo Al
FB (%) 0.8± 0.6 2.1± 0.6 -3.8± 1.2
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Unfolding Al
FB
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�

Migrations are very small. Leptons are measured very precisely.
Correct only for selection: ~nreco = A~nprod =⇒ ~nprod = A−1~nreco

Statistical uncertainty found with ensemble testing.
Unfolded Al

FB, corrected for effects of selection:
(
15.2%± 3.8+1.0

−1.3

)
%

Statistical significance from MC@NLO: 3.4 SD
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Systematics

Systematics uncertainties << statistical uncertainties

Absolute uncertainty on AFB (%)

Reco. level Prod. level
Source Prediction Measurement Measurement
Jet reco ±0.3 ±0.5 ±1.0
JES/JER +0.5 −0.5 −1.3
Signal modeling ±0.3 ±0.5 +0.3/−1.6
b-tagging - ±0.1 ±0.1
Charge ID - +0.1 +0.2/−0.1
Bg subtraction - ±0.1 +0.8/−0.7
Unfolding Bias - - +1.1/−1.0
Total +0.7/−0.5 +0.8/−0.9 +1.8/−2.6

Absolute uncertainty on Al
FB (%)

Reco. level Prod. level
Source Prediction Measurement Measurement
Jet reco ±0.3 ±0.1 ±0.8
JES/JER +0.1 −0.4 +0.1/−0.6
Signal modeling ±0.3 ±0.5 +0.2/−0.6
b-tagging - ±0.1 ±0.1
Charge ID - +0.1 +0.2/−0.0
Bg subtraction - ±0.3 ±0.6
Total ±0.5 ±0.7 +1.0/−1.3
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Cross checks

Simultaneously measured AFB from tt̄ and AFB from W+jets

Measured AFB from W+jets in good agreement with simulation
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Checked AFB dependence on solenoid and toroid polarities
⇒ Found no significant deviations

Checked AFB by lepton charge
⇒ Found no significant deviations
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AFB and top pair pT

Is the amount of gluon radiation the same for forward and backward events?

In PYTHIA, ptt̄
T is correlated with the

asymmetry when angular coherence is turned on

Coherence at least slightly overstated in
simulation
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If correlation exists, backward events selected more often than forward events

Effect on measurement is included in systematics

Effect on predictions could be larger
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Modeling and top pair pT

The correlation between ptt̄
T and AFB may be large

So we checked the modeling of ptt̄
T

Drastic change needed to get simulation to match data for ptt̄
T
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Bins of 1/2 resolution. Hash marks = uncertainty from jet reconstruction

Low ptt̄T → less gluon radiation =? larger predicted AFB
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MC@NLO = SM?

Predicted AFB from tt̄j production changes from ∼ −7% at α3
s to

−1.5% at α4
s.

S. Dittmaier, P. Uwer, and S. Weinzierl, Phys. Rev. Lett. 98, 262002 (2007).

Others argue this will not change the inclusive asymmetry.
K. Melnikov and M. Schulze, Nucl. Phys. B 840, 129 (2010).

We choose one particular generator: MC@NLO
Will future MC generators predict other AFB?
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Summary

0 10 20 30

ForwardBackward Top Asymmetry, %

Production Level

1bfCDF, 5.3 1.7±7.2±15.8

1bfDØ, 5.4 .62
+1.8

6.0±19.6

ebber,Wrixione and B.R.FS.
, 029 (2002)06JHEP 

0 5 10 15

ForwardBackward Top Asymmetry, %

Reconstruction Level

1bfCDF, 5.3 stat.)(3.7±7.5

1bfDØ, 5.4 .90
+0.8

3.7±9.2

ebber,Wrixione and B.R.FS.
, 029 (2002)06JHEP 

Inclusive results in agreement between DØ and CDF, and
deviate from prediction
Measure no significant dependencies of Afb on either mtt̄ or |∆y|
Compare to most useful SM predictions: MC@NLO, but note limitations
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Backup Slides
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Kinematic fitter

Answers questions: Which jets came from top quark and which
jets came from antitop quark?
Gets right answer 70% of events where leading four jets are from tt̄
decay.
Constrain mW to 80.4 GeV and mt to 172.5 GeV.
Vary jets within resolution and get χ2 for each jet permutation.
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Reconstructed AFB table

l+≥4 jets e+≥4 jets µ+≥4 jets l+4 jets l+≥5 jets
Raw N∆y>0 849 455 394 717 132
Raw N∆y<0 732 397 335 597 135

Ntt̄ 1126±39 622±28 502±28 902±36 218±16
NW 376±39 173±28 219±27 346±36 35±16
NMJ 79±5 56±3 8±2 66±4 13±2
AFB(%) 9.2±3.7 8.9±5.0 9.1±5.8 12.2±4.3 -3.0±7.9

mc@nlo AFB (%) 2.4±0.7 2.4±0.7 2.5±0.9 3.9±0.8 -2.9±1.1
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Reconstructed Al
FB table

l+≥4 jets e+≥4 jets µ+≥4 jets l+4 jets l+≥5 jets
Raw Nq·yl>0 867 485 382 730 137
Raw Nq·yl<0 665 367 298 546 119

Al
FB (%) 14.2± 3.8 16.5± 4.9 9.8± 5.9 15.9± 4.3 7.0± 8.0

mc@nlo Al
FB (%) 0.8± 0.6 0.7± 0.6 1.0± 0.8 2.1± 0.6 -3.8± 1.2
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DØ detector
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